## Math 342: Abstract Algebra I

 2010-2011Lecture 1: Groups, definitions and examples.

## Definition1: (Binary Operation) العملية

 الثنائيهLet $G$ be a set. A binary operation on $G$ is a function that assigns each ordered pair of elements of $G$ an element of $G$.

We can denote a binary operation $f$ as $f: G \times G \longrightarrow G$.

We say that $G$ is closed under a binary operation because the operation assigns an element of $G$ to a pair, and not some element outside $G$.

This property of a binary operation is called Closure.

## Examples of Binary operations:

1. Addition on $Z$
2. subtraction on $Z$
3. Multiplication on Z
4. Addition modulo n and multiplication modulo $n$ on the set $Z_{n}=\{0,1,2, \ldots, n-1\}$.

What about Division on $Z$, the set of integers?

## Group

Let $G$ be a nonempty set together with a binary operation (usually called multiplication) that assigns to each ordered pair ( $\mathrm{a}, \mathrm{b}$ ) of elements of $G$ an element in $G$ denoted by ab. We say $G$ is a group under this operation if the following three properties are satisfied.

1. Associativity. The operation is associative;

$$
(a b) c=a(b c) \text { for all } a, b \text {, and } c \text { in } G .
$$

2. Identity. There is element e in G (called the identity) such that

$$
\mathrm{ae}=\mathrm{ea}=\mathrm{a} \text { for all } \mathrm{a} \text { in } \mathrm{G} .
$$

3. Inverse. For each element a in G , there is an element $b$ in $G$ (called the inverse of a) such that $a b=b a=e$.

$$
\text { We write } a^{-1}=b
$$

## Abelian Group

If $G$ is a group with the property that for each a and $b$ in $G \quad a b=b a$ then we say that $G$ is abelian.
$G$ is non-Abelian if there is at least one pair of elements $a$ and $b$ such that $a b \neq b a$

## Note that:

- Make sure to verify closure when testing for a group.
- If $a$ is the inverse of $b$, then $b$ is the inverse of a.
- When encountering a group for the first time, one should determine whether it is abelian or not.


## Example 0:

The dihedral group of order $2 n$, denoted by $D_{n}$, is the group of symmetries of a regular $n$-gon.

The symmetries can be represented by rotation (denoted by $R_{i}$ for rotation of degree i) and flips, which are reflections about an axis.

## Example 1:

- $(Z,+)$,
- ( $\mathrm{Q},+$ ),
- ( $\mathrm{R},+$ )
are all groups.


## Example 2:

- Is (Z, *) a group?


## Example 3:

The subset $\{1,-1, i,-i\}$ of the complex numbers is a group under complex multiplication.

For $\mathrm{a}, \mathrm{b}$ in $\mathbf{R}, \mathrm{i}=\sqrt{-1}$
$(a+b i)(c+d i)=(a c-b d)+(a d+b c) i$.

|  | 1 | -1 | $i$ | $-i$ |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | -1 | $i$ | $-i$ |
| -1 | -1 | 1 | $-i$ | $i$ |
| $i$ | $i$ | $-i$ | -1 | 1 |
| $-i$ | $-i$ | $i$ | 1 | -1 |

Dr. Jehan A. Al-Bar, Contemporary Abstract
Algebra, by J. Gallian

1. check the closure property.
2. $\left(i^{*}-1\right)^{*} i=-i * i=1$
$i^{*}\left(-1^{*} i\right)=i^{*}-i=1$,
therefore $\left(\mathrm{i}^{*}-1\right)^{*} \mathrm{i}=\mathrm{i}^{*}\left(-1^{*} \mathrm{i}\right)$.
check the rest.
3. the identity is 1 .
4. $(1)^{-1}=1, \quad(-1)^{-1}=-1, \quad(i)^{-1}=-i,(-i)^{-1}=i$.

## Example 4:

The set $\mathrm{Q}^{+}$of positive rationals is a group under ordinary multiplication.

## What about the set of rational numbers?

## Example 5

The set $S$ of positive irrationals with 1 under multiplication satisfies the three properties given in the definition of a group but is not a group.

## Example 6:

The set of all $2 \times 2$ matrices with real entries under componentwise addition is a group.

## Example 7: <br> (Group of integers modulo $n$ )

The set $Z_{n}=\{0,1,2, \ldots, n-1\}$ for $n \geq 1$ is a group under addition modulo $n$.

## Example 8:

The set $\mathbf{R}^{*}$ of nonzero real numbers is a group under ordinary multiplication.

## Example 9: (General linear group of

## $\underline{2 \times 2}$ matrices over R)

$\operatorname{det} A$ is the determinant of a matrix $A$.

$$
\operatorname{det}(A B)=(\operatorname{det} A)(\operatorname{det} B)
$$

The set $G L(2, R)$ of $2 \times 2$ matrices with realentries and nonzero determinant is a nonabelian group under matrix multiplication.

## Example 10:

The set of all $2 \times 2$ matrices with real entries is not a group under the operation defined in example 9.

## Example 12:

The set $\{0,1,2,3\}$ is not a group under multiplication modulo 4.

|  | 0 | 1 | 2 | 3 |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 2 | 3 |
| 2 | 0 | 2 | 0 | 2 |
| 3 | 0 | 3 | 2 | 1 |

## Example 13:

the set of integers under subtraction is not a group.

## Example 15:

The set $\mathbf{R}^{n}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \mid a_{1}, a_{2}, \ldots, a_{n} \in \mathbf{R}\right\}$
is a group under componentwise addition

$$
\begin{aligned}
& \left(a_{1}, a_{2}, \ldots, a_{n}\right)+\left(b_{1}, b_{2}, \ldots, b_{n}\right)= \\
& \quad\left(a_{1}+b_{1}, a_{2}+b_{2}, \ldots, a_{n}+b_{n}\right)
\end{aligned}
$$

## Example 16:

For a fixed point $(a, b)$ in $\mathbf{R}^{2}$, define
$T_{a, b}: \mathbf{R}^{2} \longrightarrow \mathbf{R}^{2}$ by $(x, y) \longrightarrow(x+a, y+b)$.
Then $G=\left\{T_{a, b} \mid a, b \in \mathbf{R}\right\}$ is an abelian group under function composition.
what is $T_{0,0}(x, y)$ geometrically?
$(x, y) \xrightarrow{T_{a, b}}(x+a, y+b) \xrightarrow{T_{c, d}}(x+(a+c), y+(b+d))$
$T_{a, b} T_{c, d}(x, y)=T_{a+c, b+d}(x, y)$

## Example 19:

The set $\{1,2, \ldots, n-1\}$ is a group under multiplication modulo $n$ if and only if $n$ is prime.
We noticed that $Z_{4}$ is not a group under multiplication modulo 4 , since 2 and 0 have no inverses.
Also we know that (see exercise 13, chapter 0 ) an integer $a$ has a multiplicative inverse modulo $n$ if and only if $a$ and $n$ are relatively prime.

